Что означает допуска и посадки. Квалитеты точности в машиностроении

Размеров на чертежах

Введение

В условиях массового производства важно обеспечить взаимозаменяемость одинаковых деталей. Взаимозаменяемость позволяет заменить сломавшуюся во время работы механизма деталь запасной. Новая деталь должна по своим размерам и форме точно соответствовать заменяемой.

Основным условием взаимозаменяемости является изготовление детали с определенной точностью. Какой должна быть точность изготовления детали, указывают на чертежах допустимыми предельными отклонениями.

Поверхности, по которым соединяются детали, называют сопрягаемыми . В соединении двух деталей, входящих одна в другую, различают охватывающую поверхность и охватываемую. Наиболее распространены в машиностроении соединения с цилиндрическими и плоскими параллельными поверхностями. В цилиндрическом соединении поверхность отверстия охватывает поверхность вала (рис. 1, а). Охватывающую поверхность принято называть отверстие , охватывающую – вал . Эти же термины отверстие и вал условно применяют и для обозначения любых других нецилиндрическим охватывающим и охватываемым поверхностям (рис. 1, б).

Рис. 1. Пояснение терминов отверстие и вал

Посадка

Любая операция сборки деталей заключается в необходимости соединить или, как говорят, посадить одну деталь на другую. Отсюда в технике принято выражение посадка для обозначения характера соединения деталей.

Под термином посадка понимают степень подвижности собранных деталей относительно друг друга.

Различают три группы посадок: с зазором, с натягом и переходные.

Посадки с зазором

Зазором называют разность размеров отверстия D и вала d, если размер отверстия больше размера вала (рис. 2, а). Зазор обеспечивает свободное перемещение (вращение) вала в отверстии. Поэтому посадки с зазором называют подвижными посадками. Чем больше зазор, тем больше свобода в перемещении. Однако в действительности при конструировании машин с подвижными посадками выбирают такой зазор, при котором будет минимальным коэффициент трения вала и отверстия.

Рис. 2. Посадки

Посадки с натягом

Для этих посадок диаметр отверстия D меньше диаметра вала d (рис. 2, б). .Реально осуществить это соединение можно под прессом, при нагреве охватывающей детали (отверстия) и (или) охлаждении охватываемой (вала).

Посадки с натягом называют неподвижными посадками , так как взаимное перемещение соединяемых деталей исключено.

Переходные посадки

Переходными эти посадки названы потому, что до сборки вала и отверстия нельзя сказать, что будет в соединении – зазор или натяг. Это означает, что в переходных посадках диаметр отверстия D может быть меньше, больше или равен диаметру вала d (рис. 2, в).

Допуск размера. Поле допуска. Квалитет точности Основные понятия

Размеры на чертежах деталей оценивают количественно величину геометрических форм детали. Размеры подразделяют на номинальные, действительные и предельные (рис. 3).

Номинальный размер – это основной рассчитанный размер детали с учетом ее назначения и требуемой точности.

Номинальный размер соединения – это общий (одинаковый) размер для отверстия и вала, составляющих соединение. Номинальные размеры деталей и соединений выбирают не произвольно, а по ГОСТ 6636-69 «Нормальные линейные размеры». В реальном производстве при изготовлении деталей номинальные размеры не могут быть выдержаны и поэтому введено понятие действительных размеров.

Действительный размер – это размер, полученный при изготовлении детали. Он всегда отличается от номинального в большую или меньшую сторону. Допустимые пределы этих отклонений устанавливаются посредством предельных размеров.

Предельными размерами называют два граничных значения, между которыми должен находиться действительный размер. Большее из этих значений называют наибольшим предельным размером , меньшее – наименьшим предельным размером . В повседневной практике на чертежах деталей предельные размеры принято указывать посредством отклонений от номинального.

Предельное отклонение – это алгебраическая разность между предельными и номинальными размерами. Различают верхнее и нижнее отклонения. Верхнее отклонение – это алгебраическая разность между наибольшим предельным размером и номинальным размером. Нижнее отклонение – это алгебраическая разность между наименьшим предельным размером и номинальным размером.

Номинальный размер служит началом отсчета отклонений. Отклонения могут быть положительными, отрицательными и равными нулю. В таблицах стандартов отклонения указывают в микрометрах (мкм). На чертежах отклонения принято указывать в миллиметрах (мм).

Действительное отклонение – это алгебраическая разность между действительным и номинальным размерами. Деталь считают годной, если действительной отклонение проверяемого размера находится между верхним и нижним отклонением.

Допуск размера – это разность между наибольшим и наименьшим предельными размерами или абсолютная величина алгебраической разности между верхним и нижним отклонениями.

Под квалитетом понимают совокупность допусков, изменяющихся в зависимости от величины номинального размера. Установлено 19 квалитетов, соответствующих различным уровням точности изготовления детали. Для каждого квалитета построены ряды полей допуска

Поле допуска – это поле, ограниченное верхним и нижним отклонениями. Все поля допуска для отверстий и валов обозначаются буквами латинского алфавита: для отверстий – прописными буквами (H, K, F, G и т. д.); для валов – строчными (h, k, f, g и т. д.).

Рис. 3. Пояснения к терминам

Основные понятия и термины регламентированы ГОСТом 25346–89.

Размер – числовое значение линейной величины (диаметра, длины и т. д.). Действительным называют размер, установленный измерением с допустимой погрешностью.

Два предельно допустимых размера, между которыми должен находиться или которым может быть равен действительный размер, называются предельными размерами . Больший из них называется наибольшим предельным размером , меньший – наименьшим предельным размером .

Номинальный размер – размер, который служит началом отсчета отклонений и относительно которого определяют предельные размеры. Для деталей, составляющих соединение, номинальный размер является общим.

Не любой размер, полученный в результате расчета, может быть принят за номинальный. Чтобы повысить уровень взаимозаменяемости, уменьшить номенклатуру изделий и типоразмеров заготовок, стандартного или нормализованного режущего и измерительного инструмента, оснастки и калибров, создать условия для специализации и кооперирования предприятий, удешевления продукции, значения размеров, полученные расчетом, следует округлять в соответствии со значениями, указанными в ГОСТе 6636–69. При этом полученное расчетом или иным путем исходное значение размера, если оно отличается от стандартного, следует округлить до ближайшего большего стандартного размера. Стандарт на нормальные линейные размеры построен на базе рядов предпочтительных чисел ГОСТ 8032–84.

Наиболее широко используют ряды предпочтительных чисел, построенные по геометрической прогрессии. Геометрическая прогрессия обеспечивает рациональную градацию числовых значений параметров и размеров, когда нужно установить не одно значение, а равномерный ряд значений в определенном диапазоне. В этом случае число членов ряда получается меньшим по сравнению с арифметической прогрессией.

Принятые обозначения:

D (d )номинальный размер отверстия (вала);

D max ,(d m ах), D min ,(d min), D e (d e), D m (d m )– размеры отверстия (вала), наибольший (максимальный), наименьший (минимальный), действительный, средний.

ES (es ) – верхнее предельное отклонение отверстия (вала);

El (ei ) – нижнее предельное отклонение отверстия (вала);

S, S max , S min , S m – зазоры, наибольший (максимальный), наименьший (минимальный), средний соответственно;

N , N max , N min , N m натяги, наибольший (максимальный), наименьший (минимальный), средний соответственно;

TD, Td, TS, TN, TSN – допуски отверстия, вала, зазора, натяга, зазора – натяга (в переходной посадке) соответственно;

IT 1, IT 2, IT 3…ITn ……IT 18 – допуски по квалитетам обозначаются сочетанием букв IT с порядковым номером квалитета.

Отклонение – алгебраическая разность между размером (действительным, предельным и т. д.) и соответствующим номинальным размером:

Для отверстия ES = D max – D ; EI = D min – D ;

Для вала es = d max – d ; ei = d min – d .

Действительное отклонение – алгебраическая разность между действительным и номинальным размерами. Отклонение является положительным, если действительный размер больше номинального и отрицательным, если он меньше номинального. Если действительный размер равен номинальному, то его отклонение равно нулю.

Предельным отклонением называется алгебраическая разность между предельным и номинальным размерами. Различают верхнее и нижнее отклонения. Верхнее отклонение – алгебраическая разность между наибольшим предельным и номинальным размерами. Нижнее отклонение – алгебраическая разность между наименьшим предельным и номинальным размерами.

Для упрощения и удобства работы на чертежах и в таблицах стандартов на допуски и посадки вместо предельных размеров принято проставлять значения предельных отклонений: верхнего и нижнего. Отклонения всегда указывают со знаком «+» или «–». Верхнее предельное отклонение ставится несколько выше номинального размера, а нижнее – несколько ниже. Отклонения, равные нулю, на чертеже не проставляют. Если верхнее и нижнее предельные отклонения равны по абсолютной величине, но противоположны по знаку, то числовое значение отклонения указывают со знаком «±»; отклонение указывают вслед за номинальным размером. Например:

30 ; 55 ; 3 +0,06 ; 45±0,031.

Основное отклонение – одно из двух отклонений (верхнее или нижнее), используемое для определения поля допуска относительно нулевой линии. Обычно таким отклонением является отклонение, ближайшее к нулевой линии.

Нулевая линия – линия, соответствующая номинальному размеру, от которой откладываются отклонения размеров при графическом изображении допусков и посадок. Если нулевая линия расположена горизонтально, то положительные отклонения откладываются вверх от нее, а отрицательные – вниз.

Допуск размера – разность между наибольшим и наименьшим предельными размерами или абсолютная величина алгебраической разности между верхним и нижним отклонениями:

Для отверстия TD = D max – D min = ES EI ;

Для вала Td = d max – d min = es – ei .

Допуск является мерой точности размера. Чем меньше допуск, тем выше требуемая точность детали, тем меньше допускается колебание действительных размеров детали.

При обработке каждая деталь приобретает свой действительный размер и может быть оценена как годная, если он находится в интервале предельных размеров, или забракована, если действительный размер вышел за эти границы.

Условие годности деталей может быть выражено следующим неравенством:

D max (d max) ≥ D e (d e) ≥ D min (d min).

Допуск является мерой точности размера. Чем меньше допуск, тем меньше допустимое колебание действительных размеров, тем выше точность детали и, как следствие, увеличивается трудоемкость обработки и ее себестоимость

Поле допуска – поле, ограниченное верхним и нижним отклонениями. Поле допуска определяется числовым значением допуска и его положением относительно номинального размера. При графическом изображении поле допуска заключено между двумя линиями, соответствующими верхнему и нижнему отклонениям относительно нулевой линии (рисунок 1.1).

Рисунок 1.1 – Схемы расположения полей допусков:

а – отверстия (ES и EI – положительные); б – вала (es и ei – отрицательные)

В соединении деталей, входящих одна в другую, есть охватывающие и охватываемые поверхности.Вал – термин, применяемый для обозначения наружных (охватываемых) элементов деталей. Отверстие – термин, условно применяемый для обозначения внутренних (охватывающих) элементов деталей. Термины отверстие и вал относятся не только к цилиндрическим деталям круглого сечения, но и к элементам деталей другой формы, например ограниченным двумя параллельными плоскостями.

Основной вал – вал, верхнее отклонение которого равно нулю (es = 0).

Основное отверстие – отверстие, нижнее отклонение которого равно нулю (EI = 0).

Зазор – разность размеров отверстия и вала, если размер отверстия больше размера вала. Зазор обеспечивает возможность относительного перемещения собранных деталей.

Натяг – разность размеров вала и отверстия до сборки, если размер вала больше размера отверстия. Натяг обеспечивает взаимную неподвижность деталей после их сборки.

Наибольший и наименьший зазоры (натяги) – два предельных значения, между которыми должен находиться зазор (натяг).

Средний зазор (натяг) есть среднее арифметическое между наибольшим и наименьшим зазором (натягом).

Посадка – характер соединения деталей, определяемый разностью их размеров до сборки.

Посадка с зазором – посадка, при которой всегда обеспечивается зазор в соединении.

В посадках с зазором поле допуска отверстия расположено над полем допуска вала. К посадкам с зазором относятся также посадки, в которых нижняя граница поля допуска отверстия совпадает с верхней границей поля допуска вала.

Посадка с натягом – посадка, при которой всегда обеспечивается натяг в соединении. В посадках с натягом поле допуска отверстия расположено под полем допуска вала

Переходной посадкой называется посадка, при которой возможно получение как зазора, так и натяга в соединении. В такой посадке поля допусков отверстия и вала полностью или частично перекрывают друг друга.

Допуск посадки – сумма допусков отверстия и вала, составляющих соединение.

Характеристики посадок:

Для посадок с зазором:

S min = D min – d max = EI es ;

S max = D max – d min = ES ei ;

S m = 0,5 (S max + S min);

ТS = S max – S min = TD + Td ;

Для посадок с натягом:

N min = d min – D max = ei ES ;

N max = d max – D min = es EI ;

N m = 0,5 (N max + N min);

ТN = N max – N min = TD + Td ;

Для переходных посадок:

S max = D max – d min = ES ei ;

N max = d max – D min = es EI ;

N m (S m) = 0,5 (N max – S max);

результат со знаком минус будет означать, что среднее значение для посадки соответствует S m .

ТS (N ) = ТN (S ) = S max + N max = TD + Td .

В машиностроении и приборостроении широко используются посадки всех трех групп: с зазором, натягом и переходные. Посадку любой группы можно получить, либо изменяя размеры обеих сопрягаемых деталей, либо одной сопряженной детали.

Совокупность посадок, в которых предельные отклонения отверстий одного номинального размера и одной точности одинаковы, а различные посадки достигаются изменением предельных отклонений валов, называется системой отверстия . Для всех посадок в системе отверстия нижнее отклонение отверстия EI = 0, т. е. нижняя граница поля допуска основного отверстия совпадает с нулевой линией.

Совокупность посадок, в которых предельные отклонения вала одного номинального размера и одной точности одинаковы, а различные посадки достигаются изменением предельных отклонений отверстий, называется системой вала . Для всех посадок в системе вала верхнее отклонение основного вала es = 0, т. е. верхняя граница поля допуска вала всегда совпадает с нулевой линией.

Обе системы равноправны и имеют примерно одинаковый характер одноименных посадок, т. е. предельные зазоры и натяги. В каждом конкретном случае на выбор той или иной системы оказывают влияние конструкторские, технологические и экономические соображения. Вместе с тем следует обратить внимание на то, что точные валы разных диаметров могут обрабатываться на станках одним инструментом при изменении только наладки станка. Точные же отверстия обрабатывают мерным режущим инструментом (зенкеры, развертки, протяжки и т. п.), причем для каждого размера отверстия требуется свой комплект инструмента. В системе отверстия различных по предельным размерам отверстий во много раз меньше, чем в системе вала, а, следовательно, сокращается номенклатура дорогостоящего инструмента. Поэтому преимущественное распространение получила система отверстия. Однако в отдельных случаях приходится использовать систему вала. Приведем некоторые примеры предпочтительного применения системы вала:

Во избежание концентрации напряжений в месте перехода с одного диаметра на другой по прочностным соображениям нежелательно делать ступенчатый вал, и тогда его выполняют постоянного диаметра;

При ремонте, когда имеется готовый вал и под него делается отверстие;

По технологическим соображениям, когда стоимость изготовления вала, например, на бесцентрово-шлифовальных станках оказывается небольшой, выгодно применять систему вала;

При использовании стандартных узлов и деталей. Например, наружный диаметр подшипников качения изготавливается по системе вала. Если делать наружный диаметр подшипника в системе отверстия, то потребовалось бы значительно расширить их номенклатуру, а обрабатывать подшипник по наружному диаметру нецелесообразно;

Когда на вал одного диаметра необходимо установить несколько отверстий с разным видом посадок.


Похожая информация.


Свойство независимо изготовленных деталей (или узлов) занимать свое место в узле (или машине) без дополнительной обработки их при сборке и выполнять свои функции в соответствии с техническими требованиями к работе данного узла (или машины)
Неполная или ограниченная взаимозаменяемость определяется подбором или дополнительной обработкой деталей при сборке

Система отверстия

Совокупность посадок, в которых различные зазоры и натяги получаются соединением различных валов с основным отверстием (отверстие, нижнее отклонение которого равно нулю)

Система вала

Совокупность посадок, в которых различные зазоры и натяги получаются соединением различных отверстий с основным валом (вал, верхнее отклонение которого равно нулю)

В целях повышения уровня взаимозаменяемости изделий, сокращения номенклатуры нормального инструмента установлены поля допусков валов и отверстий предпочтительного применения.
Характер соединения (посадки) определяется разностью размеров отверстия и вала

Термины и определения по ГОСТ 25346

Размер — числовое значение линейной величины (диаметра, длины и т.п.) в выбранных единицах измерения

Действительный размер — размер элемента, установленный измерением

Предельные размеры — два предельно допустимых размера элемента, между которыми должен находиться (или которым может быть равен) действительный размер

Наибольший (наименьший) предельный размер — наибольший (наименьший) допустимый размер элемента

Номинальный размер — размер, относительно которого определяются отклонения

Отклонение — алгебраическая разность между размером (действительным или предельным размером) и соответствующим номинальным размером

Действительное отклонение — алгебраическая разность между действительным и соответствующим номинальным размерами

Предельное отклонение — алгебраическая разность между предельным и соответствующим номинальным размерами. Различают верхнее и нижнее предельные отклонения

Верхнее отклонение ES, es — алгебраическая разность между наибольшим предельным и соответствующим номинальным размерами
ES — верхнее отклонение отверстия; es — верхнее отклонение вала

Нижнее отклонение EI, ei — алгебраическая разность между наименьшим предельным и соответствующим номинальным размерами
EI — нижнее отклонение отверстия; ei — нижнее отклонение вала

Основное отклонение — одно из двух предельных отклонений (верхнее или нижнее), определяющее положение поля допуска относительно нулевой линии. В данной системе допусков и посадок основным является отклонение, ближайшее к нулевой линии

Нулевая линия — линия, соответствующая номинальному размеру, от которой откладываются отклонения размеров при графическом изображении полей допусков и посадок. Если нулевая линия расположена горизонтально, то положительные отклонения откладываются вверх от нее, а отрицательные — вниз

Допуск Т — разность между наибольшим и наименьшим предельными размерами или алгебраическая разность между верхним и нижними отклонениями
Допуск — это абсолютная величина без знака

Стандартный допуск IT — любой из допусков, устанавливаемых данной системой допусков и посадок. (В дальнейшем под термином «допуск» понимается «стандартный допуск»)

Поле допуска — поле, ограниченное наибольшим и наименьшим предельными размерами и определяемое величиной допуска и его положением относительно номинального размера. При графическом изображении поле допуска заключено между двумя линиями, соответствующими верхнему и нижнему отклонениям относительно нулевой линии

Квалитет (степень точности) — совокупность допусков, рассматриваемых как соответствующие одному уровню точности для всех номинальных размеров

Единица допуска i, I — множитель в формулах допусков, являющийся функцией номинального размера и служащий для определения числового значения допуска
i — единица допуска для номинальных размеров до 500 мм, I — единица допуска для номинальных размеров св. 500 мм

Вал — термин, условно применяемый для обозначения наружных элементов деталей, включая и нецилиндрические элементы

Отверстие — термин, условно применяемый для обозначения внутренних элементов деталей, включая и нецилиндрические элементы

Основной вал — вал, верхнее отклонение которого равно нулю

Основное отверстие — отверстие, нижнее отклонение которого равно нулю

Предел максимума (минимума) материала — термин, относящийся к тому из предельных размеров, которому соответствует наибольший (наименьший) объем материала, т.е. наибольшему (наименьшему) предельному размеру вала или наименьшему (наибольшему) предельному размеру отверстия

Посадка — характер соединения двух деталей, определяемый разностью их размеров до сборки

Номинальный размер посадки — номинальный размер, общий для отверстия и вала, составляющих соединение

Допуск посадки — сумма допусков отверстия и вала, составляющих соединение

Зазор — разность между размерами отверстия и вала до сборки, если размер отверстия больше размера вала

Натяг — разность между размерами вала и отверстия до сборки, если размер вала больше размера отверстия
Натяг можно определять как отрицательную разность между размерами отверстия и вала

Посадка с зазором — посадка, при которой всегда образуется зазор в соединении, т.е. наименьший предельный размер отверстия больше наибольшего предельного размера вала или равен ему. При графическом изображении поле допуска отверстия расположено над полем допуска вала

Посадка с натягом — посадка, при которой всегда образуется натяг в соединении, т.е. наибольший предельный размер отверстия меньше наименьшего предельного размера вала или равен ему. При графическом изображении поле допуска отверстия расположено под полем допуска вала

Переходная посадка — посадка, при которой возможно получение как зазора, так и натяга в соединении, в зависимости от действительных размеров отверстия и вала. При графическом изображении поля допусков отверстия и вала перекрываются полностью или частично

Посадки в системе отверстия

— посадки, в которых требуемые зазоры и натяги получаются сочетанием различных полей допусков валов с полем допуска основного отверстия

Посадки в системе вала

— посадки, в которых требуемые зазоры и натяги получаются сочетанием различных полей допусков отверстий с полем допуска основного вала

Нормальная температура — допуски и предельные отклонения, установленные в настоящем стандарте, относятся к размерам деталей при температуре 20 град С

Квалитет – это совокупность допусков, соответствующих одинаковой степени точности для всех номинальных размеров.

Всего предусмотрено 19 квалитетов (01 -самый высокий и 17 - самый низкий). Указанные стандарты СЭВ содержат ряд цифр, но указаний, в каких случаях, какой квалитет требуется, они не дают. Подобные указания приводятся конструкторами в чертежах в виде числового размера и условного обозначения поля допуска, состоящего из буквы и цифры (иногда двух букв и цифр).

Размер, для которого указывается поле допуска, обозначают числом, за которым следует буква латинского алфавита (прописная для отверстий и строчная для валов), указывающая положение поля допуска относительно нулевой линии, и цифра (две цифры), определяющая квалитет. Например,

30h6, ЗОН7, ЗОК10 . В обозначение посадки входит номинальный размер, общий для сопрягаемых поверхностей (отверстия и вала) и поля допусков для каждого элемента, начиная с отверстия. Например, ЗОН7/g6 , или

ЗОH7 =g6 , или 40 Н7/g6 .

Для неответственных несопрягаемых поверхностей назначают расположение полей допусков: для отверстий - в плюс (обозначают буквой Н); для валов - в минус (обозначают буквой h); для размеров, не идентифицируемых отверстиями и валами - симметрично (обозначают ± IT/2). Вместо условных обозначений поле допусков на чертежах часто используют предельные отклонения размеров, например, 36 + 0,02;

18 -0,036 -0,072 .

Квалитеты

Классы (уровни, степени) точности в ЕСДП названы квалитетами, что отличает их от классов точности в системе ОСТ. Квалитет (степень точности) - ступень градации значений допусков системы.

Допуски в каждом квалитете возрастают с увеличением номинальных размеров, но они соответствуют одному и тому же уровню точности, определяемому квалитетом (его порядковым номером).

Для данного номинального размера допуск для разных квалитетов неодинаков, так как каждый квалитет определяет необходимость применения тех или иных методов и средств обработки изделий.

В ЕСДП установлено 19 квалитетов, обозначаемых порядковым номером: 01; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16 и 17. Наивысшей точности соответствует квалитет 01, а наинизшей - 17-й квалитет. Точность убывает от квалитета 01 к квалитету 17.

Допуск квалитета условно обозначают прописными латинскими буквами ІТ с номером квалитета, например, ІТ6 - допуск 6-го квалитета. В дальнейшем под словом допуск понимается допуск системы. Квалитеты 01, 0 и 1 предусмотрены для оценки точности плоскопараллельных концевых мер длины, а квалитеты 2, 3 и 4 - для оценки гладких калибров-пробок и калибров-скоб. Размеры деталей высокоточных ответственных соединений, например подшипников качения, шеек коленчатых валов, деталей, соединяемых с подшипниками качения высоких классов точности, шпинделей прецизионных и точных металлорежущих станков и другие выполняют по 5-му и 6-му квалитетам. Квалитеты 7 и 8 являются наиболее распространенными. Они предусмотрены для размеров точных ответственных соединений в приборостроении и машиностроении, например деталей двигателей внутреннего сгорания, автомобилей, самолетов, металлорежущих станков, измерительных приборов. Размеры деталей тепловозов, паровых машин, подъемно-транспортных механизмов, полиграфических, текстильных и сельскохозяйственных машин преимущественно выполняют по 9-му квалитету. Квалитет 10 предназначен для размеров неответственных соединений, например для размеров деталей сельскохозяйственных машин, тракторов и вагонов. Размеры деталей, образующих неответственные соединения, в которых допустимы большие зазоры и их колебания, например размеры крышек, фланцев, деталей, полученных литьем или штамповкой, назначают по 11-му и 12-му квалитетам.

Квалитеты 13-17 предназначены для неответственных размеров деталей, не входящих в соединения с другими деталями, т. е. для свободных размеров, а также для межоперационных размеров.

Допуски в квалитетах 5-17 определяют по общей формуле:

1Тq = аі , (1)

где q - номер квалитета; а - безразмерный коэффициент, установленный для каждого квалитета и не за висящий от номинального размера (его называют “число единиц допуска”); і - единица допуска (мкм) - множитель, зависящий от номинального размера;

для размеров 1-500 мкм

для размеров св. 500 до 10 000 мм

(3)

где D с - среднее геометрическое граничных значений

(4)

где D min и D max – наименьшее и наибольшее граничное значение интервала номинальных размеров, мм.

При заданных квалитете и интервале номинальных размеров значение допуска постоянно для валов и отверстий (их поля допусков одинаковы). Начиная с 5-го квалитета, допуски при переходе к соседнему менее точному квалитету увеличиваются на 60% (знаменатель геометрической прогрессии равен 1,6). Через каждые пять квалитетов допуски увеличиваются в 10 раз. Например, для деталей номинальных размеров св. 1 до 3 мм допуск 5-го квалитета ІТ5 = 4 мкм; через пять квалитетов он увеличивается в 10 раз, т. е. ІТ1О =.40 мкм и т. д.

Интервалы номинальных размеров в диапазонах св. 3 до 180 и св. 500 до 10000 мм в системах ОСТ и ЕСДП совпадают.

В системе ОСТ до 3 мм установлены следующие интервалы размеров: до 0,01; св. 0,01 до 0,03; св. 0,03 до 0,06; св. 0,06 до 0,1 (исключение); от 0,1 до 0,3; св. 0,3 до 0,6; св. 0,6 до 1 (исключение) и от 1 до 3 мм. Интервал св. 180 до 260 мм разбит на два промежуточных интервала: св. 180 до 220 и св. 220 до 260 мм. Интервал св.-260 до 360 мм разбит на интервалы: св. 260 до 310 и св. 310 до 360 мм. Интервал св. 360 до 500 мм разбит на интервалы: св. 360 до 440 и св. 440 до 500 мм.

При переводе классов точности по ОСТ в квалитеты по ЕСДП необходимо знать следующее. Так как в системе ОСТ допуски подсчитывали по формулам, отличающихся от формул (2) и (3), то нет точного совпадения допусков по классам точности и квалитетам. Первоначально в системе ОСТ были установлены классы точности: 1; 2; 2a; 3; 3a; 4; 5; 7; 8; и 9. Позднее система ОСТ была дополнена более точными классами 10 и 11. В системе ОСТ допуски валов 1, 2 и 2а классов точности установлены меньшими, чем для отверстий тех же классов точности. Это связано с трудностью обработки отверстий по сравнения с валами.

ПОВЕРХНОСТИ ОТВЕРСТИЙ И ВАЛОВ В СИСТЕМЕ ОТВЕРСТИЯ В ЗАВИСИМОСТИ ОТ КЛАССА ТОЧНОСТИ

Класс точности (квалитет) Обозначение полей допусков РАЗМЕРЫ, мм
1…3 3…6 6…10 10…18 18…30 30…50 50…80 80…120 120…180 180…260 260…360 360…500 500…630 630…1000
(6-7) ОТВЕРСТИЕ А H7 Ra= =0,63 Ra=1,25 Ra=2,5 Rz=20 Rz=40
ВАЛ Гр u7 Ra=2,5 Rz=20 -
Пр r6,s6 Ra=2,5 Rz=40
Г n6 Ra=0,63 Ra=1,25 Ra=2,5 Rz=20
Н k6
П js6
С h6 Ra=2,5 Rz=20
Д g6 Rz=40 -
Х f7 Ra=0,63 Ra=1,25
Л e7 Ra=1,25 Ra=2,5 Rz=20
2a (7-8) ОТВЕРСТИЕ А2а H8 Ra=1,25 Ra=2,5 Rz=20 Rz=40
ВАЛ Пр 2а s7,u8 Ra= =0,63 Ra=1,25 Ra=2,5 Rz=20 Rz=40
(8-9) ОТВЕРСТИЕ A3 H8,H9 Ra= =1,25 Ra=2,5 Rz=20 Rz=40 Rz=80
ВАЛ Пр2 3 u8 - Ra=2,5 Rz=20 Rz=40 Rz=80
Пр1 3 x8,u8, s8 - Ra=2,5 Rz=20 Rz=40 Rz=80
С3 h8, h9 Ra= =1,25 Ra=2,5 Rz=20 Rz=40 Rz=80
Х3 f9, e9, e8 Ra=2,5
Ш3 d9 Ra=2,5 Rz=20 Rz=40
(11) ОТВЕРСТИЕ A4 H11 Rz=20 Rz=40 Rz=80
ВАЛ С4 h11
Х4 d11
Л4 b11, c11 Rz=20 Rz=40 Rz=80
Ш4 a11
(12) ОТВЕРСТИЕ A5 H12 Rz=40 Rz=80 Rz=160
ВАЛ С5 h12 Rz=40 Rz=80 Rz=160
Х5 b12
7 (14) ОТВЕРСТИЕ A7 H14 Rz=80 Rz=160 Rz=320

Параметры и критерии шероховатости поверхности металлов, пластмасс и других материалов установлены ГОСТ 2789-73. Стандартом указаны шесть параметров шероховатости поверхности. Наиболее часто применяют лишь два:

Ra - среднее арифметическое отклонение профиля, преимущественно в интервале Ra = 2,5 - 0,04 мкм (6 - 12-й классы шероховатости), и

Rz - высота неровностей профиля по десяти точкам, преимущественно в интервалах Rz = 320 - 20 мкм

(1 и 5-й классы шероховатости) и Rz = 0,1-г 0,05 мкм (13-14-й классы шероховатости). Шероховатость обозначают на чертеже следующим образом: \/ - для поверхности, образуемой удалением материала, например, точением, фрезерованием, травлением и т. п.; \/ - для поверхности, образуемой без удаления материала, например литьем, ковкой, прессованием, волочением и т. п.; \/ - для поверхности, метод образования которой не устанавливается. Для параметра Ra указывают лишь числовое значение шероховатости без буквенного обозначения параметра. Общее для ряда поверхностей детали значение шероховатости ставят в правом верхнем углу чертежа.

Шероховатость поверхности при механических методах обработки

Обрабатыва- емые поверхности Методы обработки Параметры шероховатости
Rz Ra Rz
2,5 1,25 0,63 0,32 0,160 0,080 0,040 0,100
Наружные цилиндрические Обтачивание Предварительное
Чистовое
Тонкое
Шлифование Предварительное
Чистовое
Тонкое
Притирка Грубая
Средняя
Тонкая
Отделка абразивным полотном
Обкатывание роликом
Шлифование Суперфиниширование
Внутренние цилиндрические Растачивание Предварительное
Чистовое
Тонкое
Сверление
Зенкерование Черновое (по корке)
Чистовое
Развертывание Нормальное
Точное
Тонкое
Протягивание
Внутреннее шлифование Предварительное
Чистовое
Калибрование шариком
Притирка Грубая
Средняя
Тонкая
Шлифование Притирка Хонингование Нормальное
Зеркальное
Плоскости Строгание Предварительное
Чистовое
Тонкое
Цилиндрическое фрезерование Предварительное
Чистовое
Тонкое
Торцовое фрезерование Предварительное
Чистовое
Тонкое
Торцовое точение Предварительное
Чистовое
Тонкое
Плоское шлифование Предварительное
Чистовое
Притирка Грубая
Средняя
Тонкая

Предельные отклонения формы и расположения поверхностей задают лишь тогда, когда требования к точности по этим параметрам выше требований к точности размеров. В иных случаях на отклонения по форме и расположению технолог имеет право израсходовать половину допуска на размер. Отклонения согласно ГОСТ 24642-81, ГОСТ 24643-81 указывают на чертежах условными обозначениями по ГОСТ 2.308- 79. Данные о предельных отклонениях формы и расположения поверхностей указывают в прямоугольной рамке, разделенной на две или три части: в первом поле помещают знак допуска; во втором - числовое значение допуска в миллиметрах и в третьем - буквенное обозначение базы (баз), например: | / | 0,01 I А | - радиальное биение данной поверхности относительно оси поверхности А (база) не более 0,01 мм.

Отклонения формы и расположения поверхностей

Отклонение формы реальной поверхности или реального профиля от формы номинальной (заданной чертежом) поверхности (профиля)

оценивается наибольшим расстоянием Д от точек реальной поверхности (профиля) до прилегающей поверхности (профиля) по нормали к ней.

Прилегающей поверхностью (профилем) на­зывается поверхность (профиль), имеющая форму номинальной поверх­ности (профиля), соприкасающаяся с реальной поверхностью (профи­лем) и расположенная вне материала детали так, чтобы отклонение от

нее наиболее удаленной точки реальной поверхности (профиля) в пре­делах нормируемого участка имело минимальное значение.

ГОСТ 24642-81 устанавливает следующие отклонения формы по­верхностей

Отклонение от прямолинейности в плоскоскости т и. Частными видами этого отклонения являются выпуклость и вогнутость.

Выпуклость - отклонение от прямолинейности, при котором удаление точек реального профиля от прилегающей прямой уменьшается от края к середине (рис. 6, а)\

Вогнутость - отклонение от прямолинейности, при котором удаление точек реального профиля от прилегающей прямой увеличивается от края к середине (рис. 6б).


Выпуклость Вогнутость


Отклонение от круглости . Частными видами этого отклонения являются овальность и огранка.

Овальность - отклонение от круглости, при котором реальный профиль представляет собой овалообразную фигуру, наибольший d m 3 X и наименьший d mla диаметры которой находятся во взаимно перпендикулярных направлениях

Огранка - отклонение от круглости, при котором реальный профиль представляет собой многогранную фигур" (рис. 6, е).

Отклонение профиля продольного сечения характеризует отклонение от прямолинейности и параллельности образующих. Частными видами этого отклонения являются конусоооразность, бочкообразность и седлообразность.

Конусообраность - отклонение профиля продольного сечения, при которое образующие прямолинейны, но не параллельны (рис. 7, а).

Бочкообразность - отклонение профиля продольного сечения, при котором образующие непрямолинейны и диаметры увеличиваются от краев к середине сечения (рис. 7, б).

Седлообразность - отклонение профиля продольного сечения, при котором образующие непрямолинейны и диаметры уменьшаются от краев к середине сече­ния (рис. 7, в).

Отклонение расположения характеризует отклонение реального расположения рассматриваемого элемента (поверхности, линии, точки) от его номинального (заданного чертежом) расположения. Различают следующие отклонения расположения.

Отклонение от параллельности плоскостей - разность А-В (рис. 8, а) наибольшего и наименьшего расстояний между прилегающими плоскостями на заданной площади или длине.

Отклонение от параллельности прямых в плоскости - разность А-В (рис. 8, б) наибольшего и наимень­шего расстояний между прилегающими прямыми на заданной длине.

Отклонение от параллельности осей поверхностей вращения (или прямых в пространстве) - отклонение Да; (рис. 8, в) от параллельности проекций осей на их общую теоре­тическую плоскость, проходящую через одну ось и одну из точек дру­гой оси.

Перекос осей (или прямых в пространстве) - отклонение Ду (рис. 8, в) от параллельности проекций осей на плоскость, перпендику­лярную общей теоретической плоскости и проходящую через одну из осей.

Отклонение от параллельности оси поверхности вращения и плоскости - разность А-В (рис. 8, г) наибольшего и наименьшего расстояний между прилегаю­щей плоскостью и осью поверхности вращения на заданной длине.

Отклонение от перпендикулярности плоскостей, осей или оси и плоскости - отклонение Д (рис. 8, д) угла между плоскостями, осями или осью и плоскостью от прямого угла, выраженное в линейных единицах на заданной длине L.

Торцовое биение - разность Д (рис. 8, е) наибольшего и наименьшего расстояний от точек реальной торцовой поверхности, рас­положенных на окружности заданного диаметра, до плоскости, пер­пендикулярной базовой оси вращения. Если диаметр не задан, то торцевое биение определяется на наибольшем диаметре торцевой по­верхности.

Отклонение от соосности относительно базовой поверхности - наибольшее расстояние Д (рис. 8, ж) между осью рассматриваемой поверхности и осью базовой поверхности иа всей длине рассматриваемой поверхности или расстояние между этими осями в заданном сечении.

Отклонение от соосности относительно общей оси - наибольшее расстояние Д х; Д 2 (рис. 8, з) от оси рас­сматриваемой поверхности до общей оси двух или нескольких номина­льно соосных поверхностей вращения в пределах длины рассматри­ваемой поверхности. За общую ось двух поверхностей принимается прямая, проходящая через эти оси в средних сечениях рассматривае­мых поверхностей.

Радиальное биение - разность Д=Л тах -y4 min (рис. 8, и) наибольшего и наименьшего расстояний от точек реальной поверхности до базовой оси вращения в сечении, перпендикулярном этой оси.

Отклонение от пересечения - кратчайшее расстояние Д (рис. 8, к) между осями, номинально пересекающимися.

Отклонение от симметричности - наибольшее расстояние (рис. 8, л) между плоскостью симметрии (осью симметрии) рассматриваемой поверхности и плоскостью симметрии (осью симметрии) базовой поверхности.

Смещение оси (или плоскости симметрии) от номинального расположения - наибольшее расстояние Д (рис. 8, м) между действи­тельным и номинальным расположениями оси (или плоскости симмет­рии) по всей длине рассматриваемой поверхности.

Предельные отклонения формы и расположения поверхностей указывают на чертежах или в технических требованиях. При обозначении на чертеже данные о предельных отклонениях формы и расположения поверхностей указывают в прямоугольной рамке, разделенной на две или три части: в первой части помещают условное обозначение отклонения, во второй - предельное отклонение в миллиметрах и в третьей - буквенное обозначение базы или другой плоскости, к которой относится отклонение.

Нормы точности металлорежущих станков характеризуются наибольшими допускаемыми отклонениями формы и расположения поверхностей обрабатываемых заготовок. Под нормой точности станка следует понимать предельно достижимую точность изготовления детали при выполнении чистовых операций на новом станке или на станке, находящемся в эксплуатации непродолжительное время. Показатели точности, получаемые при различных видах обработки с учетом износа оборудования и приспособлений, погрешностей бази­рования и других факторов, обычно находятся ниже этих пределов и характеризуют экономически достижимую точность обработки. Экономически достижимая точность обработки поверхности определяется размером затрат, необходимых для применен ния данного способа обработки, которые не должны превышать затрат при любом другом способе, пригодном для обработки этой же поверхности. В качестве примеров можно привести данные о степени точности геометрической формы деталей при обработке на различных станках (табл. 1).

Точность формы и расположения поверхностей характеризуется предельными отклонениями, назначаемыми по ГОСТ 24643-81 при наличии особых требований, возникающих из условий работы, изготовления или измерения деталей. В остальных случаях отклонения формы и расположения поверхностей должны находиться в пределах поля допуска соответствующего размера.

ГОСТ 24643-81 устанавливает 16 степеней точности и соответствующие этим степеням (в зависимости от номинальных длин и диаметров) размеры предельных отклонений формы и расположения поверхности. Так, предельные отклонения от плоскостности и прямолинейности для длин от 25 до 40 мм составляют для 1-й степени точности 0,5 мкм, а для 10-й - 30 мкм; предельные значения отклонений формы цилиндрических поверхностей для диаметров от 18 до 30 мм составляют для 1-й степени точности 0,6 мкм, для 10-й степени точности - 40 мкм и предельные значения радиального биения для тех же диа­метров и степеней точности - соответственно 1,6 и 100 мкм. Точности размеров, формы и шероховатости взаимозависимы: нельзя изготовить точную поверхность, если она имеет большую шероховатость, невозможно обеспечить точность измерения такой поверхности и т. п. В пределах Rz = 10 - 0,2 мкм зарекомендовали себя следующие соотношения между допуском на размер и средней высотой шероховатости:

- симметричные поверхности, сопрягаемые по прессовым посадкам,

- Rz = (0,1 - 0,12) Т;

- переходные посадки - Rz = (0,084 - 0,10) Т ;

- посадки движения - Rz = (0,05 - г 0,07) Т.

Допуск размера взаимодействует также с точностью формы и расположения поверхностей. В справочной литературе имеются соответствующие таблицы.

Факторы, влияющие на точность обработки.

В процессе изготовления деталей в результате действия большого числа производственных факторов (колебания припусков заготовок, сил резания, износа инструмента и т. д.) на всех операциях и переходах возникают погрешности (размера, формы, расположения поверхностей относительно друг друга, механических свойств и др.). Поэтому изделия, выполненные по одному и тому же ТП, неизбежно отличаются друг от друга и от проектного „идеального" прототипа по всем характеристикам качества. Это явление называют рассеянием характеристик качества. Рассеяние любого параметра качества характеризуется полем рассеяния w, представляющим собой разность между максимальным и минимальным значениями данной характеристики из партии изделий, и практической кривой распределения (рассеяния) значений этой характеристики.

Некоторые производственные факторы по их воздействию на рассеяние характеристики качества (на образование суммарной погрешности) сопоставимы друг с другом, а их влияние каждого в отдельности невелико. Их трудно выявить и детерминировать, поэтому вклад таких факторов в погрешность изделия (операции) определяют статистически (поле рассеяния и кривую распределения). Погрешности, образованные под воздействием таких производственных факторов, называют случайными .

Если на координатной сетке по оси абсцисс откладывать номера последовательно обрабатываемых деталей, а по оси ординат - соответствующие им значения характеристики качества, например размер, то полученная совокупность точек представит точечную диаграмму. Случайные погрешности образуют поле рассеяния w, рис. 3.2, а. Практическая кривая распределения размеров в этом поле, как будет показа­но в § 3.2, близка к кривой Гаусса, закона нормального распределения .

Наряду со случайно проявляющимися факторами имеются и такие, которые выделяются из общей массы производственных факторов своим доминирующим влиянием. Такие факторы образуют постоянные систематические погрешности характеристики качества, которые имеют одинаковое значение на каждом изделии партии или переменные систематические погрешности , значения которых на деталях различны, но изменения от детали к детали подчинены определенному закону.

Влияние совокупного действия случайных и систематических доминирующих факторов приводит к практическим кривым, представляющим собой композиции соответствующих кривых распределения, рис. 3.2в. Величина поля рассеяния при этом равна сумме величин полей рассеяния: w = w1 + w2 .

Совокупное действие большого числа независимых факторов одного порядка величин, образующих случайные погрешности (поля рассеяния), изучается только на основе статистических законов путем обобщения опытных данных, составления соответствующих таблиц, диаграмм и т. д. Доминирующие производственные факторы можно идентифицировать, исследовать, рассчитать, возникновение погрешностей вследствие их действия предупредить при отладке ТО. Важно отметить, что разделение погрешностей на систематические и случайные весьма условно. Так, например, если вся партия заготовок обработана одним резцом, то погрешность установки резца является систематической погрешностью. Если же на протяжении обработки партии заготовок сменилось несколько резцов, то погрешность установки резца приобретает случайный характер и ее необходимо исследовать статистически.

Принципиальная зависимость между точностью изготовления деталей и их себестоимостью приведена на рис. 1.4. Высокая точность соответствует значительным затратам на обработку. По мере понижения требований к точности обработки затраты, а следовательно и себестоимость, снижаются (кривая).

Рис. 1.4. Определение оптимальной точности изготовления деталей.

õ - величина допуска; õ 6орт - оптимальный допуск; С - себестоимость, руб. / 1- себестоимость операций изготовления деталей; 2 - себестоимость сборочных операций; 3 - результирующая кривая себестоимости.

До великой промышленной революции 18 века каждый механизм изготавливался одним мастером - от начала и до конца. Самыми сложными механизмами в то время были часы, навигационные приборы и замки. Каждая деталь подгонялась к другой индивидуально, и в двух часах, вышедших с одной мануфактуры не было двух одинаковых деталей. При ремонте невозможно было вынуть износившуюся деталь и заменить ее новой, так как они не подходили друг к другу. Развитие промышленности и переход от мануфактур к фабрикам привнесло такие понятия, как разделение труда и серийное производство. Появилась необходимость стандартизации, которая позволяла бы изготавливать одинаковые (в определенных пределах) детали в рамках одной фабрики, а еще лучше - в рамках целой отрасли. Стандартные детали, выпускаемые одной фабрикой, можно было бы использовать на многих предприятиях, а при ремонте можно было бы просто выбросить износившуюся деталь и заменить ее новой.

Для этого было необходимо создать систему стандартов, которые позволили бы организовать производство деталей с четко определенными требованиями, сначала для каждой фабрики, а затем - для отрасли или всей промышленности в целом. Так появилась инженерная дисциплина, которая называется «основы взаимозаменяемости». Именно там родились такие термины, как допуски, посадки, расчет размерных цепей и многое другое.

В процессе обучения многих не раз путало и пугало понятие допусков и посадок. Попробуем разобраться с этим и понять, для чего они предназначены. Ведь без использования этих понятий невозможно правильное и точное соединение деталей в машиностроении и металлообработке .

Вся система допусков и посадок нацелена на стандартизацию деталей и обеспечение взаимозаменяемости их при сборке или ремонте механизмов и машин различной степени сложности. Для решения этой проблемы все серийно выпускаемые изделия должны быть выполнены с определенной точностью механической обработки. Точность производства деталей определяет система допусков и посадок, разработанных специалистами по стандартизации. Эти параметры всегда присутствуют в чертежах и технических заданиях на обработку. Задача этой статьи - научить правильно читать и понимать чертежи, а не только видеть номинальные габариты детали.

Описание основных определений и терминов

В основе построения системы посадок лежит понятие о системе отверстия (все посадки образуются соединением валов различного размера с основным отверстием) и системе вала (все посадки образуются соединением отверстий различного размера с основным валом).

Различают посадки, допуски размеров и посадок.

Допуском называют регламентированную область отклонений от номинального размера детали. При отображении на чертеже эта область составляет промежуток между линиями или числами, которые соответствуют верхнему и нижнему пределам отклонения от номинала.


Область допуска описывает не только величину допуска, но и размещение его относительно номинального размера детали или поверхности. Размещение области может быть относительно нулевой линии:

Симметричным и асимметричным;

Выше или ниже его;

Со смещением в одну из сторон.

В инженерной графике принято указывать предельные отклонения в миллиметрах над размерной линией после обозначения номинала с учетом их знаков.


Посадка - параметр, который характеризует соединение деталей. Он определяется величиной получающихся при соединении зазоров или натягов. Все посадки делятся на три основных типа:

С зазором;

С натягом;

Переходные.

Допуском посадки считается разность между наибольшим и наименьшим зазором, которые составляют соединение.

Вследствие неизбежного возникновения области рассеяния размеров сопрягаемых деталей от наибольшего до наименьшего значения, возникает рассеяние зазоров и натягов.

Крайние значения зазоров и натягов рассчитываются по формулам. Точность посадки считается более высокой, если колебание зазоров или натягов минимально.

Допуски и посадки нормированы государственными стандартами:

1. ЕСДП - “Единая система допусков и посадок”.

2. ОНВ - “Основные нормы взаимозаменяемости”.

Первая система применяется при составлении допусков и посадок размеров гладких элементов деталей. Также, она работает для посадок, образуемых соединениями этих деталей.

ОНВ регламентирует минимальные и максимальные отклонения и зазоры в резьбовых и конических, шпоночных и шлицевых соединениях. Требования основных норм взаимозаменяемости учитываются при расчетах зубчатых передач.

Допуски и посадки необходимо указывать в технологической документации:

Эскизах;

Чертежах;

Технологических картах и т.п.

Основой всех техпроцессов, при их составлении, служат правильно выбранные допуски и посадки. Осуществление контроля качества деталей в разрезе точности происходит на этапе производства путем проверки соответствия их предельных отклонений от номинальных размеров.

Номинальные размеры и отклонения от них

Когда создается деталь, то, прежде всего, формируется точный чертеж с ее номинальными размерами. Однако, на практике невозможно изготовление двух абсолютно точных деталей. Поэтому все изделия изготавливаются с тем или иным классом точности.

Чем выше этот класс, тем меньше размер отклонений от номинального размера детали. Таким образом, допуск характеризует величину отклонений в размере. Он бывает только положительным, хотя размер детали по факту обработки может отличаться от номинального, как в большую, так и в меньшую сторону.

Более точно допуском можно назвать разность между максимальным и минимальным размером детали при ее механической обработке. Предельные размеры определенны классом точности. Между ними должен находиться размер любой детали из партии. В результате использования мерительного инструмента мы, после воздействия на заготовку, можем установить ее действительный размер.

Рассмотрим пример механической обработки детали «Штанга толкателя».

Данная деталь помогает своевременному открытию и закрытию клапанов ДВС и, при работе под нагрузкой, подвержена выработке. В частности, на головке штанги образуется борозда, которая может способствовать залипанию, заклиниванию клапанов в неправильном положении и, как следствие, приводить к неправильной работе двигателя. Для ликвидации подобной канавки (выработки) применяется токарная ремонтная операция: «Протачивание штанги толкателя» в пределах минимального значения допуска на механическую обработку.

Задача токаря при выполнении такой операции двояка:

1. Снятие металла, выравнивание поверхности головки штанги.

2. Замеры и выбраковка изделий.

То есть, квалифицированный рабочий должен сначала устранить шероховатость поверхности, после чего проверить соответствие на попадание обработанной поверхности в нижнее поле допуска. Штанга, головка которой попадает в значения нижнего отклонения допуска, считается отремонтированной и готовой к повторному использованию. Те же изделия, которые имеют меньший диаметр после обработки, чем указано в допуске, выбраковываются и идут на переплавку.

Итак, допуск - это модульное значение разницы между граничными отклонениями. Этот параметр задает допускаемые границы действительных размеров годных деталей в партии и фиксирует точность изготовления.

Говоря об экономической части понимания значения допуска, следует отметить, что с уменьшением размеров отклонений качество изделий возрастает. Однако, стоимость их производства нелинейно увеличивается. Крайне важно, при составлении чертежей, учитывать все условия, при которых будет эксплуатироваться каждая деталь. И формировать такие допуски на мехобрабоку, которые являются необходимыми и достаточными для данных условий. Ведь излишняя точность в классе изготовления детали могут сделать ее применение экономически нецелесообразным.

В вышеприведенном примере почти все штанги толкателей при малом допуске можно было бы забраковать, вместо их восстановления и возвращения на службу.

Посадки, как способ эффективного сопряжения поверхностей

Детали при сборке должны эффективно выполнять свои функции. Для обеспечения их регламентируемого взаимодействия выработана система посадок. В технологических процессах посадкой называют условия соединения деталей, которые определяются размерами зазоров между ними или натягов. Посадка описывает степень свободы взаимодействия деталей в паре. Как частный случай, может описывать степень сопротивления их взаимному смещению.

Рассмотрим классический случай с отверстием и валом, работающим в нем. Каждая из деталей имеет свой номинальный размер. Однако, каждая деталь из партии одинаковых изделий изготавливаются в пределах своих допусков.

Поэтому, при их соединении, возможен зазор , который технологически допустим. Величина такого зазора не может превышать разность допусков на обработку этих деталей. То есть, зазор определенной величины не послужит причиной неправильной работы соединения, а изделие сможет выполнять свои функции без повышенного износа или биения.

Также, возможно соединение вала и отверстия с натягом . Такой тип соединения возможен, когда фактический размер вала превышает размер отверстия в пределах допусков. Технологически осуществляется запрессовка такого вала в отверстие, при которой гарантируется качественная работа соединения.

На практике часто имеет место переходная посадка . Произвольно соединяя различные детали из партии, возможно получение как зазора между деталями, так и натяга. Фактически, мы имеем полное или частично перекрытие полей допусков изделий.

Расчет посадок и допусков по квалитетам точности

Квалитет - IT представляет собой степень точности, то есть совокупность допусков, рассматриваемых как соответствующие одному уровню точности для всех номинальных размеров.

В ЕСПД классы точности называют для удобства квалитетами. С ростом квалитета точность изготовления деталей понижается вследствие увеличения допуска на ее механическую обработку. Всего насчитывают 19 квалитетов: от 01 до 17.

Существуют специальные сводные таблицы, в которых описано поле допусков по возрастанию номинальных размеров. Считается, что они соответствуют одному и тому же уровню точности, определяемому квалитетом, а именно - его порядковым номером.

Для каждого номинального размера допуск для разных квалитетов может быть неодинаков. Он колеблется в зависимости от способов обработки изделий. В ЕСДП наивысшим квалитетом точности считают 01, а допуск квалитета условно обозначают латиницей - IT. После этого обозначения проставляется номер квалитета.

При составлении технической документации, чертежей под словом допуск понимается допуск системы. Рассмотрим подробнее, для каких видов деталей предусмотрены различные квалитеты.

IT01, IT0 и IT1 оценивают точность измерительных приборов с плоскопараллельными поверхностями;

IT2, IT3 и IT4 регламентируют точность гладких калибров-пробок и калибров-скоб;

5-й и 6-й квалитеты используют при определении допусков деталей для высокоточных ответственных соединений, таких как шпинделей прецизионного оборудования, подшипников качения, шеек коленвалов и т.п.

IT7 и IT8 считаются самыми массовыми в машиностроении. С помощью этих квалитетов описывают допуски на изготовление размеров деталей ДВС, авто- и авиатранспорта, станков для обработки металла, измерительных приборов и т.д. Считается, что для ответственных соединений деталей в этих отраслях данной степени точности при их изготовлении достаточно и экономически - целесообразно.

IT9 оценивает точность размеров деталей в полиграфии и тепловозостроении, например, подшипники скольжения неточных валов; при изготовлении сельхозтехники, подъемно-транспортных механизмов, текстильных машин.

10-й квалитет используют для описания размеров неответственных соединений при производстве подвижного состава, сельскохозяйственных машин и посадочных мест холостых шкивов на валах.

IT11 и IT12 используют для регламентирования размеров в литых и штампованных деталях с большими зазорами, которые используются в неответственных соединениях.

Низшие квалитеты с 13го по 17й применяют для остальных неответственных размеров деталей. Как правило, это не входящие в соединения детали, в которых допускаются свободные размеры. Они же могут регламентировать межоперационные размеры.

Допуски в квалитетах 5—17 определяют по общей формуле:

1Tq = ai, где:

q — номер квалитета;

а — безразмерный коэффициент, именуемый числом единиц допуска. Устанавливается для каждого квалитета и не зависит от номинального размера;

i — единица допуска (мкм) — множитель, находящийся в функции от номинального размера;

Применяют следующее стандартное правило: заданным квалитетам и интервалам номинальных размеров соответствует значение допуска, которое является постоянным для валов и отверстий.

С 5-го квалитета, допуски с порядковым понижением квалитета увеличиваются на 60%, поскольку используется знаменатель геометрической прогрессии, который равен 1,6. Таким образом, мы имеем десятикратное увеличение допусков через каждые 5 квалитетов.

Особенности расчетов с помощью размерных цепей

Одним из важнейших моментов при разработке допусков и посадок является расчет размерной цепи. Совокупность всех зависимых размеров в конструкции изделия или машины, которые образуют замкнутую цепь и определяют взаимное положение осей или поверхностей, называют размерной цепью. Грамотный анализ необходим для определения оптимального соотношения размеров, которые взаимосвязаны. Подробные геометрические расчеты используют при создании машин и механизмов, приспособлений и приборов. Без них не обойтись на стадии проектирования любого техпроцесса.

В любой определенной замкнутой размерной цепи выбирается некая точка отсчета. Размеры, образующие размерную цепь, не могут назначаться независимо. Параметры хотя бы одного из размеров определяются остальными. Определив такое ключевое звено, можно правильно подобрать значение и точность, остальных размеров в цепи.

Каждый из размеров механизма или машины, образующих размерную цепь, именуют звеном. Такими звеньями становятся угловые или линейные параметры изделия:

Промежутки между плоскостями или осями;

Натяги и зазоры;

Диаметральные размеры;

Перекрытия и мертвые ходы;

Отклонения формы и расположения поверхностей.

Каждая размерная цепь имеет одно начальное звено и несколько составляющих звеньев, последнее из которых связано с исходным. За точку отсчета принимается исходное звено, к которому привязывается основное требование точности. В соответствии с техусловиями, качество изделия предопределяет точность его исходного звена.

При сборке изделия исходное звено часто замыкает размерную цепь. Его называют конечным или замыкающим. Оно представляет собой законченный результат изготовления всех остальных звеньев цепи в ходе выполнения последовательных действий.

Остановимся подробнее на звеньях, которые входят в цепь. Они подразделяются на две группы.

Группа увеличивающихся звеньев - ее составляют звенья, с увеличением которых увеличивается и конечное звено.

Группа уменьшающихся звеньев , к которой относят звенья, с убыванием их размера уменьшается и замыкающее звено.


1. Грамотная постановка задачи, для решения которой производят расчет размерной цепи или группы цепей. Каждая цепь должна содержать не более одного замыкающего или исходного звена.

2. Установка требований к точности изделия для правильного определения исходного звена, которые подразделяются на:

Требования к качеству изделия по точности взаимного расположения сборочных единиц;

Условия собираемости изделий, зависящие от точности взаимной ориентации его деталей и правильного соотношения сборочных размеров.

Теория размерных цепей помогает решить многочисленные технологические, конструкторские и метрологические задачи. Она является неотъемлемым этапом при производстве и эксплуатации изделий, не говоря уже о конструкторском, предваряющем производство, периоде. На этапе конструкторской разработки устанавливаются кинематические и геометрические связи между размерами. Инженеры-конструкторы производят расчет номиналов их значений, а также возможных отклонений и допусков в размерах звеньев.

В ходе составления нового технологического процесса проводят расчет межоперационных размеров, всех припусков и допусков. Для него крайне важно произвести:

Обоснование последовательности операций;

Просчет требуемой точности оснастки для изготовления изделий и их сборки;

Разработку технических условий на машины, их составные части;

Определение средств и методов измерений для контролируемых деталей.

Прямая и обратная задачи

Размерные цепи нашли широкое применение при решении прямой и обратной задач по определению допусков и посадок в деталях. Эти задачи отличает последовательность расчетов, собственно, откуда и происходят их названия. Они взаимосвязаны между собой, а решение одной из них может являться проверкой другой.

Итак, что же из себя представляет прямая задача? По сути, это расчет от определенного теоретически исходного звена. В ходе ее решения определяют номинальные размеры, допуски и предельные отклонения всех элементов (звеньев) размерной цепи. Причем, расчет ведется от заданных допусков и номиналов исходного звена.

При обратной задаче расчет ведется исходя из значений допусков и размеров составляющих звеньев. Процесс позволяет определить номинальный размер, допуск и предельные отклонения замыкающего звена.

Методом экстремумов, который принимает во внимание только предельные отклонения составляющих звеньев;

Вероятностным методом, который учитывает закон нормального распределения размеров деталей при их изготовлении и случайный характер их сочетания в сборке.

Способы получения искомой точности начального звена

На практике применяются 5 способов необходимой точности начального звена:

1. Полная взаимная заменяемость.

2. Вероятностный метод.

3. Способ селективной сборки.

4. Пригонка.

5. Регулировка положения относительно друг друга.

Классификация способов получения необходимой точности исходного звена изложена в таблице по стандартизации.

Конструктивные нюансы изделия, его функциональное назначение, стоимость изготовления и сборки, а также другие параметры важно учитывать при выборе способа получения заданной точности исходного или замыкающего звена. Уровень работы квалифицированного специалиста определяется выбором способа достижения точности с определенными параметрами, который позволит максимально сократить эксплуатационные и технологические издержки.

Самым перспективным, хотя не всегда возможным, является способ полной взаимной заменяемости. Необходимо стремиться к тому, чтобы сборка деталей или изделия производилась без подбора, пригонки или регулировки. Идеальный вариант, когда все собранные изделия отвечают всем параметрам взаимной заменяемости, не часто встречается.

Наиболее экономически оправданным во многих случаях является вероятностный метод. Он позволяет определять граничные, а значит более дешевые квалитеты при малом проценте бракованных деталей.

Четкая система допусков и посадок, а также методов их определения, позволяет избежать излишних затрат на всех этапах производства: от проектирования до серийного выпуска готовой продукции.